Pythagorean Triangle With $\frac{\text { freat }}{\text { fermeter }}$ As Quartic Integer

P. Thirunavukarasu, S. Sriram
Assistant Professor -P.G \& Research Department of Mathematics, Periyar E.V.R College
Tiruchirappalli - 620 023, Tamilnadu, India
Assistant Professor-P.G \& Research Department of Mathematics, National College,
Tiruchirappalli - 620 001, Tamilnadu, India

Abstract

Four different patterns of Pythagorean triangle, where, in each of which the ratio may be expressed as a quartic integer. A few interesting relations among the solutions are given.

Index Terms-Pythagorean triangle, Ratio (Area/perimeter) as quartic integer.

I. INTRODUCTION

The method of obtaining three non-zero integers x, y and z under certain relations satisfying the equation $x^{2}+y^{2}=z^{2}$ has been a matter of interest to various mathematicians [1 to7]. In [8 to 13] special Pythagorean Problems are studied. In this communication, we present yet another interesting Pythagorean triangle where in each of which the ratio (Area/Perimeter) may be expressed as a quartic integer. A few interesting relation among the solutions are given.

Notation:

$$
\mathrm{T}_{m, n}=n\left[1+\frac{(n-1)(m-2)}{2}\right]=\text { polygonal number of }
$$

rank n , with sides m
Tet $_{n}=$ Tetrahedral number of rank $\mathrm{n}=$
$\frac{n(n+1)(n+2)}{6}$.
$\mathrm{SP}_{n}=$ Square Pyramidal number of rank $\mathrm{n}=$ $\frac{n(n+1)(2 n+1)}{6}$.
$\mathrm{P} \rho_{\mathrm{n}}=$ Oblong Number of rank $\mathrm{n}=\frac{n^{2}(n+1)}{2}$

II. METHOD OF ANALYSIS

The most cited solution of the Pythagorean equation $+y^{2}=z^{2}$ is

$$
\begin{aligned}
& x=2 p q \\
& y=p^{2}-q^{2} \text { where } p>q>0 \\
& z=p^{2}+q^{2}
\end{aligned}
$$

Denoting the Area and the Perimeter of the above Pythagorean triangle by A and P respectively, the assumption that the ratio $\frac{A}{P}$ can be expressed as a quartic integer leads to the equation

$$
\begin{equation*}
\mathrm{pq}-\mathrm{q}^{2}=2 \alpha^{4} \tag{2}
\end{equation*}
$$

where α is the non-zero integer. $(\alpha>0)$
Introducing the linear transformations

$$
\begin{align*}
& \mathrm{X}=p+q \\
& \mathrm{Y}=p-q \tag{3}
\end{align*}
$$

the equation (2) can be written as

$$
\begin{equation*}
Y(X-Y)=4 \alpha^{4} \tag{4}
\end{equation*}
$$

In what follows, we present four different patterns of integral solutions of (4) and thus, in view of (3) and (1), the corresponding sides of the Pythagorean triangle are obtained

PATTERN I

Choosing

$$
\begin{equation*}
Y=4 \alpha \tag{5}
\end{equation*}
$$

$$
X-Y=\alpha^{3}
$$

in (4) and solving we get
$\mathrm{X}=4 \alpha+\alpha^{3}$
$\mathrm{Y}=4 \alpha$
In view of (3) the integral values p and q are given by

$$
p=\frac{8 \alpha+\alpha^{3}}{2}, q=\frac{\alpha^{3}}{2}
$$

where in α is even positive integer.
Case (i)
Taking $\alpha=2 k ;(\mathrm{k}>0)$
we have $p=8 k+4 k^{3}, \quad q=4 k^{3}$
and thus the corresponding sides of the Pythagorean
triangle are obtained from (1) are given by

$$
\begin{aligned}
& x=x(k)=64 k^{4}+32 k^{6} \\
& y=y(k)=64 k^{2}+64 k^{4} \\
& z=z(k)=64 k^{2}+64 k^{4}+32 k^{6}
\end{aligned}
$$

Properties

1. $z-x$ is a perfect square.
2. $6(x-z)$ is a nasty number
3. $y-z+x \equiv 0(\bmod 64)$.

International Journal of Engineering and Innovative Technology (IJEIT)
 Volume 3, Issue 7, January 2014

4. $y-z+x=64$ times a quartic integer
5. $y-128 \mathrm{~T}_{3, k^{2}}=0$
6. $y-64 k^{2}=64$ times a perfect square
7. $y-64 k^{2} \equiv 0(\bmod 64)$
8. $z-128 \mathrm{~T}_{3, k^{2}} \equiv 0(\bmod 32)$
9. $z-64 k^{2}-32 k^{6}=64$ times a perfect square
10. $y-z \equiv 0(\bmod 32)$
11. $x-z \equiv 0(\bmod 64)$
12. $x-y \equiv 0(\bmod 32)$
13. $z+32 k^{4}=192\left[\right.$ Tet $\left._{k}^{2}\right]$.
14. $x+y-32 k^{4}=192\left[\right.$ Tet $\left._{k} 2\right]$.
15. $y+z-32 k^{4}-64 k^{2}=192\left[\left[\right.\right.$ Tet $\left._{k^{2}}\right]$.
16. $x+z-32 k^{4}-32 k^{6}=192\left[\left[\right.\right.$ Tet $\left._{k^{2}}\right]$
17. $z-96\left[\mathrm{SP}_{k^{2}}\right]-16 k^{4} \equiv 0(\bmod 48)$.
18. $y+z-16\left[\mathrm{SP}_{k^{2}}\right]-80 k \equiv 0(\bmod 112)$.
19. $x+y-16\left[\mathrm{SP}_{k^{2}}\right]-48 k^{4} \equiv 0(\bmod 80)$.
20. $x+y-16\left[\mathrm{SP}_{k^{2}}\right]-80 k^{4}=48$ times a perfect square.

PATTERN II

Choosing

$$
\begin{align*}
& Y=\alpha^{3} \tag{7}\\
& X-Y=4 \alpha \tag{8}
\end{align*}
$$

in (4), and solving we get

$$
\begin{aligned}
& \mathrm{X}=\alpha^{3}+4 \alpha \\
& \mathrm{Y}=\alpha^{3}
\end{aligned}
$$

In view of (3) the integral values p and q are given by

$$
p=\alpha^{3}+2 \alpha, \quad q=2 \alpha
$$

where in α can take any positive integer ($\alpha>0$)
Thus the corresponding sides of the Pythagorean triangle obtained from (1) are given by

$$
\begin{aligned}
& x=x(\alpha)=4 \alpha^{4}+8 \alpha^{2} \\
& y=y(\alpha)=\alpha^{6}+4 \alpha^{4} \\
& z=z(\alpha)=\alpha^{6}+4 \alpha^{4}+8 \alpha^{2}
\end{aligned}
$$

Properties

1. $z-y=8$ times a perfect square.
2. $3(z-y)=$ a nasty number
3. $y-z+x \equiv 0(\bmod 4)$.
4. $x-8 \mathrm{~T}_{3, \alpha^{2}} \equiv 0(\bmod 4)$
5. $z-\mathrm{T}_{3, \alpha^{2}}-\alpha^{6} \equiv 0(\bmod 4)$
6. $y-2 \alpha^{2} \mathrm{~T}_{3, \alpha^{2}} \equiv 0(\bmod 3)$.
7. $z-6\left[\right.$ Tet $\left.\alpha^{2}\right]-\alpha^{4} \equiv 0(\bmod 3)$.
8. $x+y-6\left[\right.$ Tet $\left._{\alpha^{2}}\right]-5 \alpha^{4} \equiv 6$ times a perfect square.
9. $x+y-6\left[\right.$ Tet $\left._{\alpha^{2}}\right]-6 \alpha^{2} \equiv 0(\bmod 5)$
10. $x+y-6\left[\right.$ Tet $\left._{\alpha^{2}}\right]-5 \alpha^{4} \equiv 0(\bmod 8)$
11. $z-y \equiv 0(\bmod 8)$
12. $y+z-6\left[\mathrm{SP}_{\alpha^{2}}\right]-5 \alpha^{4} \equiv 0(\bmod 7)$
13. $2(x+y)-6\left[\mathrm{SP}_{\alpha^{2}}\right]-13 \alpha^{4} \equiv 0(\bmod 15)$
14. $2 z-6\left[\mathrm{SP}_{\alpha^{2}}\right]-\alpha^{4} \equiv 0(\bmod 5)$

PATTERN III

Choosing

$$
\begin{gathered}
\mathrm{Y}=2 \alpha \\
\mathrm{X}-\mathrm{Y}=2 \alpha^{3} \quad \begin{array}{l}
(10)
\end{array}
\end{gathered}
$$

in (4) and solving we get

$$
\begin{aligned}
& \mathrm{X}=2 \alpha+2 \alpha^{3} \\
& \mathrm{Y}=2 \alpha
\end{aligned}
$$

In view of (3), the integral values of p and q are given by

$$
p=2 \alpha+\alpha^{3}, q=\alpha^{3}
$$

where α can take any positive integer $(\alpha>0)$.
Thus, the corresponding sides of the Pythagorean triangle are given by

$$
\begin{aligned}
& \mathrm{x}=x(\alpha)=4 \alpha^{4}+2 \alpha^{6} \\
& \mathrm{y}=y(\alpha)=4 \alpha^{2}+4 \alpha^{4} \\
& z=z(\alpha)=4 \alpha^{2}+4 \alpha^{4}+2 \alpha^{6}
\end{aligned}
$$

Properties

(1) $z-y \equiv 0(\bmod 2)$
(2) $y-z+x \equiv 0(\bmod 4)$
(3) $z-x=4$ times a perfect square
(4) $6(z-x)$ is a nasty number.
(5) $x-4\left(\mathrm{~T}_{3, \alpha^{2}}\right) \equiv 0(\bmod 2)$
(6) $z-x \equiv 0(\bmod 4)$
(7) $y-8\left(\mathrm{~T}_{3, \alpha^{2}}\right)=0$
(8) $x-4\left(T_{3, \alpha^{2}}\right) \equiv 0(\bmod 2)$
(9) $y-4 \alpha^{2} \equiv 0(\bmod 4)$
(10) $z-12\left[\right.$ Tet $\left._{\alpha^{2}}\right] \equiv 0(\bmod 2)$
(11) $x+y-12\left[\mathrm{Tet}_{\alpha^{2}}\right] \equiv 0(\bmod 2)$
(12) $y+z-12\left[\right.$ Tet $\left._{\alpha}{ }^{2}\right]-2 \alpha^{4} \equiv 4$ times a perfect square
(13) $y+z-12\left[\right.$ Tet $\left._{\alpha}{ }^{2}\right]-4 \alpha^{2} \equiv 0(\bmod 2)$
(14) $y+z-2 \alpha^{4}-12\left[\right.$ Tet $\left._{\alpha} 2\right] \equiv 0(\bmod 4)$
$(15) z-6\left[\mathrm{SP}_{\alpha^{2}}\right]+\alpha^{4} \equiv 0(\bmod 3)$
$(16) x+y-6\left[\mathrm{SP}_{\alpha^{2}}\right]-5 \alpha^{4} \equiv 0(\bmod 7)$

PATTERN IV

Choosing

$$
\mathrm{X}-\mathrm{Y}=2 \alpha \quad \begin{array}{r}
\mathrm{Y}=2 \alpha^{3} \tag{11}\\
(12)
\end{array}
$$

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)
 Volume 3, Issue 7, January 2014

in (4) and solving we get

$$
\begin{aligned}
& \mathrm{X}=2 \alpha+2 \alpha^{3} \\
& \mathrm{Y}=2 \alpha^{3}
\end{aligned}
$$

In view of (3), the integral values of p and q are given by

$$
p=2 \alpha^{3}+\alpha, q=\alpha
$$

where α can take any positive integer.
Thus, the corresponding sides of the Pythagorean triangle obtained from (1) are given by

$$
\begin{aligned}
& \mathrm{x}=x(\alpha)=2 \alpha^{2}+4 \alpha^{4} \\
& \mathrm{y}=y(\alpha)=4 \alpha^{4}+4 \alpha^{6} \\
& z=z(\alpha)=2 \alpha^{2}+4 \alpha^{4}+4 \alpha^{6}
\end{aligned}
$$

Properties

(1) $z-y=2$ times a perfect square.
(2) $3(z-y)$ is a nasty number.
(3) $y-z+x \equiv 0(\bmod 4)$
(4) $z-2\left[\right.$ Tet $\left.\alpha^{2}\right]-2 \alpha^{6}+4 \mathrm{~T}_{3, \alpha^{2}}=0$
(5) $y-8 \alpha^{2} \mathrm{~T}_{3, \alpha^{2}}=0$
(6) $x-4 \alpha^{2} \mathrm{~T}_{3, \alpha^{2}} \equiv 0(\bmod 2)$
(7) $y-x \equiv 0(\bmod 2)$
(8) $\left(x+z-12\left[\mathrm{SP}_{\alpha^{2}}\right]\right.$
$-2 \alpha^{4} \equiv 0(\bmod 4)$
(9) $(x+z)-12\left[\mathrm{SP}_{\alpha^{2}}\right]-4 \mathrm{P}_{\mathrm{n}}=0$
(10) $(x+z)-2\left[\right.$ Tet $\left.\alpha^{2}\right]-4\left[\mathrm{P}_{\mathrm{n}}\right]-2 \alpha^{6} \equiv 0$ $(\bmod 2)$

REFERENCES

[1] Dicksen, L.E., History of the theory of numbers, Vol. II, Chelsea Publishing Company, New York (1952).
[2] Smith, D.E., History of Mathematics, Vol. I and II, Dover Publications, New York (1953).
[3] Boyer, Carl, B. and Merzbach, U.T.A.C., A History of Mathematics, John Wiley and Sons (1989).
[4] Akituro, Nishi, A method of obtaining Pythagorean Triples, Amer. Math. Monthly, Vol. 94, No. 9, 869-871 (1987).
[5] Albert H. Beiler, "Recreations in the Theory of Numbers", Dover Publications, New York, 1963.
[6] S. B. Malik, "Basic Number Theory", Vikas Publishing House Pvt. Limited, New Delhi. 1998.
[7] M. A. Gopalan and S. Devibala, Pythagorean Triangle: A Treassure House, Proceeding of the KMA National Seminar on Algebra, Number Theory and Applications to Coding and Cryptanalysis, Little Flower College, Guruvayur, September 16-18, 2004.
[8] M A. Gopalan and R. Anbuselvi, A Special Pythagorean Triangle, Acta Ciencia Indica XXXI M, No. 1, p. 053, 2005.
[9] M. A. Gopalan and S. Devibala, On a Pythagorean Problem, Acta Ciencia Indica, XXX II M, No. 4, p. 1451, 2006.
[10] M. A. Gopalan and S. Leelavathi "Pythagorean Triangle with Area / Perimeter as a Square Integer", International Journal of

Mathematics, Computer Sciences and Information Technology Vol. 1, No. 2, July-December 2008, pp. 199-204.
[11] M. A. Gopalan and J. Kaliga Rani, A Special Pythagorean Triangle, Acta Ciencia Indica, XXX II M, No. 4, p. 1451, 2006.

AUTHOR'S PROFILE

Dr. P. Thirunavukarasu received the received the B.Sc.,M.Sc. and M.Phil degree in Mathematics from the Bharathidasan University, Tamilnadu, South India..

He completed his Ph.D degree from Bharathidasan University/Regional Engineering College. He has published many papers in International and National level conferences. He also published many books. He is the Life member of ISTE and TheMathematicsTeacher/JM/Books/off icial Journal of the Association of Mathematics Teachers of India. His research areas are Applications of Soft Computing, Analysis, Operations Research, Fuzzy Sets and Fixed point theory.

S. Sriram received the B.Sc., M.Sc., and M.Phil degree in Mathematics from the Bharathidasan University, Tamilnadu, South India, in 1994, 1997 and 2000 , respectively. His ongoing research focusing on the subject of number theory and its applications on Graph Theory.

