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 

Abstract— Four different patterns of Pythagorean triangle, 

where, in each of which the ratio may be expressed as a quartic 

integer. A few interesting relations among the solutions are given. 

 

Index Terms—Pythagorean triangle, Ratio (Area /perimeter) 

as quartic integer. 

 

I. INTRODUCTION 

The method of obtaining three non-zero integers x, y and z 

under certain relations satisfying the equation x
2
 + y

2
 = z

2
 has 

been a matter of interest to various mathematicians [1 to7]. In 

[8 to 13] special Pythagorean Problems are studied. In this 

communication, we present yet another interesting 

Pythagorean triangle where in each of which the ratio 

(Area/Perimeter) may be expressed as a quartic integer. A few 

interesting relation among the solutions are given.  

 

Notation: 

 






 


2

)2)(1(
1 T

mn
nm,n  = polygonal number of 

rank n, with sides m 

nTet  = Tetrahedral number of rank n = 

6

)2( )1(  nnn
. 

nSP  = Square Pyramidal number of rank n = 

6

)12( )1(  nnn
. 

 

Pn = Oblong Number of rank n = 
2

 )1( 2 nn
 

 

II. METHOD OF ANALYSIS 

The most cited solution of the Pythagorean equation           x
2
 

+ y
2
 = z

2 
 is 

x = 2pq 

y = p
2
 – q

2
 where p > q > 0 (1) 

z = p
2
 + q

2 

 
 

Denoting the Area and the Perimeter of the above 

Pythagorean triangle by A and P respectively, the assumption 

that the ratio 
P
A  can be expressed as a quartic integer leads to 

the equation  

pq – q
2
 = 2

4
              (2) 

where  is the non-zero integer. ( > 0) 

 

Introducing the linear transformations 

X = p + q 

Y = p – q            (3) 

the equation (2) can be written as  

     Y(X –Y) = 4
4 

          (4) 

In what follows, we present four different patterns of 

integral solutions of (4) and thus, in view of (3) and (1), the 

corresponding sides of the Pythagorean triangle are obtained 

 

PATTERN I 

Choosing  

Y = 4         (5) 

     X – Y = 
 3
   (6) 

in (4) and solving we get  

X = 4 + 
3 

Y = 4  

In view of (3) the integral values p and q are given by  

 
2

8α 3
p , 

2

α3

q  

 where in  is even positive integer.   

 

Case (i) 

 Taking  = 2k ; (k > 0) 

we have  p = 8 k + 4k
3
,  q = 4k

3
 

and thus the corresponding sides of the Pythagorean 

triangle are obtained from (1) are given by  

x = x( k ) = 64 k
4
 + 32 k

6 

y = y( k ) = 64 k
2
 + 64 k

4
  

z = z( k ) = 64 k
2
 + 64 k

4
 + 32 k

6 

 

Properties  

1.  z – x  is a perfect square. 

2.  6(x - z) is a nasty number 

3.  y – z + x  0(mod 64).   

Pythagorean Triangle With PERIMETER
AREA As 

Quartic Integer 
P. Thirunavukarasu, S. Sriram

 

Assistant Professor -P.G & Research Department of Mathematics, Periyar E.V.R College 

Tiruchirappalli – 620 023, Tamilnadu, India 

Assistant Professor–P.G & Research Department of Mathematics, National College,         

Tiruchirappalli – 620 001, Tamilnadu, India 



                                                       
   

 

ISSN: 2277-3754   

ISO 9001:2008 Certified 
International Journal of Engineering and Innovative Technology (IJEIT) 

Volume 3, Issue 7, January 2014 

101 

 

4.  y – z + x  = 64 times a quartic integer    

5.  y – 128 23,
T

k
 = 0 

6.  y – 64 k
2
 = 64 times a perfect square 

7.  y – 64 k
2
   0 (mod 64)   

8.  z – 128 23,
T

k
  0 (mod 32)   

9.  z – 64 k
2
 – 32 k

6
 = 64 times a perfect square 

10.  y – z   0 (mod 32) 

11.  x – z   0 (mod 64) 

12.  x – y   0 (mod 32) 

13.  z + 32 k
4
 = 192 [ 2Tet

k
]. 

14.  x + y – 32 k
4
 = 192 [ 2Tet

k
]. 

15.  y + z – 32 k
4
 – 64 k

2
 = 192 [[ 2Tet

k
]. 

16.  x + z – 32 k
4
 – 32 k

6
 = 192 [[ 2Tet

k
] 

17.  z – 96 [ 2SP
k

] – 16 k
4
  0 (mod 48). 

18.  y + z – 16 [ 2SP
k

] – 80 k  0(mod 112). 

19.  x + y  – 16 [ 2SP
k

]– 48 k
4
  0(mod 80). 

20.  x + y – 16  [ 2SP
k

] – 80 k
4
 = 48 times a perfect 

square.   

 

PATTERN II 

Choosing  

Y = 
3 

          (7)    

X – Y = 4        (8) 

in (4), and solving we get  

X = 
3
  + 4 

Y = 
3 

In view of (3) the integral values p and q are given by  

  23 p ,  2q  

 where in  can take any positive integer (  > 0)  

Thus the corresponding sides of the Pythagorean triangle 

obtained from (1) are given by  

x = x(  ) = 4 
4
 + 8 

2 

y = y(  ) = 
6
 + 4 

4
 

z = z(  ) = 
6
 + 4 

4
  + 8 

2
 

 

Properties  

1. z – y  = 8 times a perfect square. 

2.  3(z - y) = a nasty number 

3. y – z + x  0(mod 4).   

4. x – 8 23,
T


 0 (mod 4)   

5. z –  23,
T


– 

6
  0 (mod 4) 

6. y – 2
2
  23,

T


  0 (mod 3). 

7. z – 6 [ 2Tet


] - 
4
  0 (mod 3).  

8. x + y – 6 [ 2Tet


] - 5
4
   6 times a perfect square. 

9. x + y – 6 [ 2Tet


] - 6
2
   0 (mod 5)  

10. x + y – 6 [ 2Tet


] - 5
4
   0 (mod 8)  

11. z – y   0 (mod 8) 

12.  y + z – 6 [ 2SP


] – 5 
4
  0 (mod 7) 

13. 2 (x+y)– 6 [ 2SP


]– 13 
4
  0 (mod 15) 

14. 2z – 6 [ 2SP


] – 
4 
   0 (mod 5) 

PATTERN III 

 

Choosing   

Y =  2        (9) 

       X– Y = 2
3
  (10) 

in (4) and solving we get  

X = 2 +  2
3
 

Y = 2 

In view of (3), the integral values of  p and q are given by  

p = 2 + 
3
,  q = 

3
  

where  can take any positive integer ( > 0). 

Thus, the corresponding sides of the Pythagorean triangle are 

given by 

x = x() = 4 
4
 + 2 

6
 

y = y() = 4 
2
 + 4 

4 

z = z() = 4 
2
 + 4 

4 
+ 2 

6 

Properties  

(1) z – y  0 (mod 2) 

(2) y – z + x  0 (mod 4) 

(3) z – x = 4 times a perfect square 

(4) 6( z – x ) is a nasty number. 

(5) x – 4 ( 23,
T


)  0 (mod 2) 

(6) z – x  0 (mod 4) 

(7) y – 8 ( 23,
T


) = 0  

(8) x – 4 ( 23,
T


)  0 (mod 2) 

(9) y – 4 
2
   0 (mod 4) 

(10)  z – 12 [ 2Tet


]   0 (mod 2) 

(11) x+ y – 12 [ 2Tet


]    0 (mod 2) 

(12) y + z – 12 [ 2Tet


] – 2 
4
  4 times a perfect square 

(13)  y+ z – 12 [ 2Tet


]  – 4 
2
  0 (mod 2) 

(14) y + z – 2 
4
 –12 [ 2Tet


]   0 (mod 4) 

(15) z – 6 [ 2SP


] + 
4
  0 (mod 3) 

(16) x + y  – 6 [ 2SP


] – 5 
4
  0 (mod 7) 

PATTERN IV 

Choosing   

Y =  2
3
   (11)   

       X– Y = 2  (12) 
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in (4) and solving we get  

X = 2 +  2
3
 

Y = 2
3
  

In view of (3), the integral values of  p and q are given by  

p = 2
3
 + ,  q =   

where  can take any positive integer. 

Thus, the corresponding sides of the Pythagorean triangle 

obtained from (1) are given by 

x = x() = 2 
2
 + 4 

4
 

y = y() = 4 
4
 + 4 

6 

z = z() = 2 
2
 + 4 

4 
+ 4 

6 

Properties  

(1) z – y  =  2 times a perfect square.  

(2) 3( z – y ) is a nasty number. 

(3) y – z + x  0 (mod 4) 

(4)  z – 2 [ 2Tet


 
] – 2 

6
 + 4  23,

T


= 0  

(5) y – 8 
2
 23,
T


= 0  

(6) x – 4 
2
 23,
T


 0 (mod 2) 

(7) y – x 0 (mod 2) 

(8) (x+ z  – 12 [S 2P


 
] 

                 -2 
4
0 (mod 4)  

(9) ( x+ z ) – 12 [S 2P


 
] – 4 Pn =0   

(10) ( x+ z ) – 2 [ 2Tet


] – 4 [ Pn ]  – 2 
6
   0 

(mod 2)  
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